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ABSTRACT 
The presence of outliers within datasets can significantly alter their behavior, leading to substantial 

errors in estimated results. Consequently, accurate parameter estimation necessitates the 

identification and mitigation of outlier effects. Various methodologies, including Method of 

Moments Estimation (MME) and Maximum Likelihood Estimation (MLE), are employed to 

estimate parameters in distributions affected by outliers. This research explores the dynamic 

behavior of parameters in the presence of outliers and devises strategies to mitigate their influence. 

Emphasis is placed on understanding the multifaceted impact of outliers on data sets, including their 

potential to distort formulas, mischaracterize parameters, and skew summary statistics. A simulated 

study is conducted to assess the robustness of test statistics in outlier detection. The Gamma 

distribution is examined, particularly in the context of size-biased and area-biased functions, with 

parameters calculated accordingly. Discordancy tests are employed to identify outliers, with 

graphical representations aiding in the delineation of scale and shape parameter behaviors. 

Furthermore, this research extends to the detection and analysis of both single and dual outliers, 

facilitating a comprehensive understanding of their effects and subsequent recalibration of results. 

Keywords: Generalized Gamma Distribution, Probability Density Function, Detect Outliers, Size 

& Area Biased    

 

INTRODUCTION

variability in the data, experimental error, or 

instrumental error. Whether to include or exclude 

outliers depends on the context of the analysis. A 

single outlier can have a substantial impact on 

statistical results, making the detection and 

management of outliers a crucial aspect of data 

analysis, particularly in finance research. 

Detecting outliers is the first step in many data-

mining processes. There are various methods for 

identifying and handling outliers, which can be 

categorized into univariate and multivariate 

techniques, as well as parametric and non-parametric 

methods. Large datasets often contain numerous 

events, some of which may be outliers. Effective data 

analysis begins with identifying these outliers. While 

outliers are sometimes viewed as noise or errors, they 

can also carry significant information. 

Detected outliers are potential sources of 

anomalous data that can lead to model 

misspecification, biased parameter estimation, and 

incorrect results. Therefore, it is crucial to identify 

them before conducting modeling and analysis. 

Currently, the sample mean and sample 

variance provide accurate estimates of the data's 

location and distribution, provided that the influence 

of outliers is minimized. An outlier indicates a 

deviation that appears to be inaccurate or inconsistent 

with the rest of the data points. 

There are various definitions of outliers, one of 

which is: 

"An observation (or subset of observations) 

which appears to be inconsistent with the remainder 

of that set of data" (Barnett and Lewis, 1994). 
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Outliers are a prominent topic of discussion in 

the field of statistics. It is rare to encounter a dataset 

without at least one outlier. Often, outliers are seen 

as disturbances in the data. However, this research 

aims to demonstrate that outliers can hold valuable 

information once they have been properly identified. 

Outliers can cause deviations in parameters, 

impacting the accuracy of results. Therefore, it is 

crucial to detect and understand the effects of these 

observations. 

Edgeworth (1887) discussed types of outliers 

and their real-life comparisons. Natural phenomena 

are coded into data from which conclusions are 

drawn. Experimental data, as noted by Anscombe 

(1960) and Beckman & Cook (1983), are subject to 

errors. Identifying these errors is crucial to avoid 

misleading results. Astronomers since the 18th 

century suggested removing extreme values to 

maintain accuracy. 

 

Moment Distribution 

In observational studies related to human life, 

wildlife, plants, insects, and forest populations, there 

is no well-defined sampling plan. Equal probability 

sampling is often impossible, leading to biased 

recorded observations. Ignoring this bias can result 

in incorrect conclusions. In natural and biological 

work, observations often fall into non-experimental, 

unsystematic, and non-random categories. 

Addressing model selection and data interpretation is 

crucial. Researchers have proposed ad hoc solutions, 

such as weighted distributions, to correct bias. 

Moment distributions are significant in probability 

and statistics when random sampling is infeasible, 

especially in environmental and biological studies, to 

ensure accurate data analysis (Kagan, 2002). 

 

Size Biased Distribution 

A one-sided distribution is a special case of weighted 

distribution, as noted by Fisher (1934), who 

developed such distributions to address bias in 

models. These biased distributions occur when 

observations from a random process do not have an 

equal probability of being recorded, but are instead 

recorded according to a weighting function. This 

concept is particularly relevant in fields like forestry, 

medical sciences, and psychology. When the 

probability of selecting an individual in a population 

is proportional to its magnitude, it is known as 

length-biased sampling. Consequently, observations 

selected based on their length result in a length-

biased distribution. 

An observer records nature's phenomena, noting 

deterministic patterns. Documented perceptions vary 

until properly categorized, with weighted and size-

biased methods commonly used in research. 

Weighted distributions, constrained by unity, are 

prevalent in various models, including likelihood 

testing and visibility bias in data compilation. 

Notable works, such as those by Patil and Rao 

(1978), explore these distributions' implications, 

particularly in population data and wildlife 

management. Differences in weighted distributions' 

values are often subject to hypothesis testing, 

shedding light on diverse phenomena and informing 

research methodologies. 

 

Area Biased Distribution 

The classification of distributions includes length-

biased studies, where sampling is proportional to 

length, causing bias. Cox (1962) introduced the 

length-biased distribution, applied notably in 

biomedical fields like predictive modeling. Works in 

weighted distributions, stemming from this concept, 

are termed area-biased distributions. Patill and Rao 

developed basic distributions and their weighted 

forms, including beta, gamma, and pareto 

distributions. Researchers have subsequently applied 

these weighted forms to lifetime distributions, such 

as length-biased weighted generalized Rayleigh, 

Bayes estimation of length-one-sided Weibull, and 

length-biased beta distributions. 

 

How Size Biased Distribution to identify the 

outliers: 

There are some methods or test statistic to identify 

the outliers. Some of these tests statistic are given 

below: 

i. The Dixon type test  

ii. Likelihood of maximum ratio (MLR) 

statistic test 

iii. Zerbet as well as Nikulin (ZN) test statistic 

iv. Shadrokh and Pazira test statistic 

v. Lalitha and Kumar test statistic 

vi. Gap test statistic 

vii. Tietjen-Moore test statistic 
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Objectives: 

 To estimate Gamma Distribution and the 

parameters when outliers in probability 

distribution. 

 Evaluate the effect of outliers in Gamma 

Distribution moment distribution. 

 

Literature Review 

(Rohlf, 1975) suggest a new method for multivarate 

outlier dectection named generalized gap test. 

Observtion based on distribution of edges length of 

minimum spanning trees. It very diffcult to the 

observation presence sperated from the main cloud 

point of multiavte. The separated edge lenth fellow 

the gamma distribution closely if data in multvarate 

normal distributed. 

(Kimber, 1979) perform three different test for 

single outlier which apply on gamma sampled data 

and parameters are unknown, first was principle 

maximum liklihhod based and the others was 

transformed based to normal approximation. The 

performance of the teste are studied when one outlier 

in the data set. 

Kimber (1982) a procedure which sequential for 

the test of k upper outlier in exponential sample is 

propsed, K=2,3,4 is under considration and critaical 

values are tabulated. Existing test are also comparied 

and flexibality is also discussed, low outliers are also 

considered in study. 

Kimber (1983) introducted procedure for testing 

gamma sampled outliers in which shape paramter is 

unknown and also scale parameter is unknown. New  

Critical value table is not necessary. Tests properties 

of the upper outliers is investigated and low outlier is 

also study briefly. 

(Akinsete et al., 2008) study about the different 

four parameters of the beta pareto distribution. The 

beta pareto distrubtion is found to be unimodel or 

decreasing hazard rate. The study also study about 

the distribution mean, mean deviation, variance, 

kurtosis, skewness and relation of these are also 

under considration. The technique of the maximum 

liklihood is also proposed and applied on two 

different data sets. 

(Alexander et al., 2012) proposed Generalized 

Beta Generated(GBG) distribution, sub- model 

involve the all classical beta-generaters, exponential 

distrubution and kumaraswamy generated. Under 

three conditionds there are maximum entropy 

distribution, which are indecating the skewness of 

the generator of classical beta is used only to control 

tail-entropy and addional shape paramters is 

necessary for addition in the entropy center of the 

fountain distribution. Without differentiating tail 

weights this parameter control the skewness. 

Different derivations for moments, quantils and 

generating functions. GBG also has tractable 

properties. Maximum lillihood is used for the 

estimation of the parameters and new class is applied 

on the real life data. 

(Alizadeh et al., 2013) discussed uniformly 

minimum variance unbiased(UMVU), percentile 

(PC), method of maximum liklihood, least square 

(LSE) also weighted least square (WLSE) 

probability distribution function estimations also 

cumulative density function are calculated for the 

rayleigh distrubution. Given model is useful and 

effective in model strength also in modelling general 

lifetime data. This study shows that (MLE) is good 

than the UMVUE, and UMVUE is good than the 

others.  

(Hariharan et al., 2014) detection of the outlier 

is one of the important aspect of the data mining 

which find the observation that behaviour is different 

from the other observation.Detection of the outlier is 

also called outlier mining. In this study literature of 

the outlier and analysis of the outlier is given, 

different method for the outlier are comparied in this 

study. 

(Tripathi et al., 2014) consider the issue of 

estimation of the pareto parameters under quadratic 

loss funtion (QLF) when parameter of the scale is 

limited. Zidek’s (1974), the difference of risk 

integral expression, kubokawa approch is used for 

enhanced estimators compared to normal estimators, 

results are given. 

(Gogoi and Das, 2015) this study is for the the 

comparsion of some statistics empirical power for 

detection of many outliers are in sample which is 

exponential distributed under alternative slippage 

method. Different degree of discordancy parameters 

are also investgated in this study. The results of the 

simulation suggest that maximum liklihood is good 

and rest of other statistics followed by dixon form 

test in the exponentail sample for the treatment of the 

upper outliers. Maximum liklihood is also better than 

the Lalitha and kumar (2012) test.  

(Nasiri, 2016) lomax distribution in the 

occurrence of outliers addressed these problems in 

estimation of the parameter of 𝑅 = 𝑃(𝑦 < 𝑥) using 

help of two methods i.e. moments estimation and 

maximum likelihood method also find their joint 
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distribution and, in both cases, when λ is known and 

in case of unknown λ the MLE is used for function 

of R when K-Outliers are found. 

(Jones et al., 2014) applies the generalized 

beta of the second kind (GB2) distribution to English 

hospital inpatient cost data. Using a quasi-

experimental design, it compares the GB2 with 

nested and limiting cases, finding B2 and GG 

distributions perform better. The GB2 aids in 

selecting parametric distributions for healthcare 

costs. 

A novel family of skewed distributions, 

termed modified beta distributions, is introduced. 

This new family of distributions extends the 

flexibility of the traditional beta distribution to better 

model asymmetric data. Key properties of the 

modified beta distributions are derived, offering 

insights into their behavior and potential applications 

(Nadarajah et al., 2014). 

 

Results and Methodology  

Gamma Distribution: 

𝑓(𝑥; 𝛼, 𝛽) =
𝛽𝛼

Γ𝛼
𝑥𝛼−1𝑒−𝛽𝑥 

𝛽1 =
4

𝛼
   𝛾1 =

2

√𝛼
 

𝛽2 =
2(𝛼+2)

𝛼
  𝛾2 =

(4−𝛼)

𝛼
 

 

 

 

Moment Gamma distribution (MGD): 

The pdf of two parameters MGD is defined as: 

𝑔(𝑥; 𝛼, 𝛽) =
𝑥ℎ𝑓(𝑥;𝛼,𝛽)

𝜇ℎ
′   ;  𝑥 > 0, 𝛼 > 0, 𝛽 >

0, ℎ = 1,2,3, … 

Where     𝜇ℎ
′ = 𝐸(𝑥ℎ) =

∫ 𝑥ℎ. 𝑓(𝑥; 𝛼, 𝛽)
∞

−∞
𝑑𝑥 

𝜇ℎ
′ = ∫ 𝑥ℎ .

𝛽𝛼

Γ𝛼
𝑥𝛼−1𝑒−𝛽𝑥

∞

0

𝑑𝑥 

𝜇ℎ
′ =

𝛽𝛼

Γ𝛼
∫ 𝑥ℎ+𝛼−1𝑒−𝛽𝑥

∞

0

𝑑𝑥 

𝜇ℎ
′ =

𝛽𝛼

Γ𝛼
∫ (

𝑣

𝛽
)ℎ+𝛼−1𝑒−𝑣

∞

0

𝑑𝑣

𝛽
 

𝜇ℎ
′ =

𝛽𝛼−1

Γ𝛼
∫

𝑣ℎ+𝛼−1

𝛽ℎ+𝛼−1
𝑒−𝑣

∞

0

𝑑𝑣 

𝜇ℎ
′ =

𝛽𝛼−1

𝛽ℎ+𝛼−1Γ𝛼
∫ 𝑣ℎ+𝛼−1𝑒−𝑣

∞

0

𝑑𝑣 

𝜇ℎ
′ =

1

𝛽ℎΓ𝛼
∫ 𝑣(ℎ+𝛼)−1𝑒−𝑣

∞

0

𝑑𝑣 

𝜇ℎ
′ =

Γ(h + 𝛼)

𝛽ℎΓ𝛼
 

As     

 𝑔(𝑥; 𝛼, 𝛽) =
𝑥ℎ𝑓(𝑥;𝛼,𝛽)

𝜇ℎ
′    

So,    

 𝑔(𝑥; 𝛼, 𝛽) =
𝑥ℎ𝛽𝛼

Γ𝛼
𝑥𝛼−1𝑒−𝛽𝑥

Γ(h+𝛼)

𝛽ℎΓ𝛼

 

𝑔(𝑥; 𝛼, 𝛽) =
𝑥ℎ𝛽ℎΓ𝛼.

𝛽𝛼

Γ𝛼 𝑥𝛼−1𝑒−𝛽𝑥

Γ(h + 𝛼)
  

𝑔(𝑥; 𝛼, 𝛽) =
𝛽𝑠+𝛼.𝑥ℎ+𝛼−1𝑒−𝛽𝑥

Γ(h+𝛼)
   ……. (1) 

𝜇𝑟
′ = 𝐸(𝑥𝑟) = ∫ 𝑥𝑟. 𝑔(𝑥)

∞

−∞

𝑑𝑥 
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𝜇𝑟
′ = ∫ 𝑥𝑟.

𝛽ℎ+𝛼 . 𝑥ℎ+𝛼−1𝑒−𝛽𝑥

Γ(h + 𝛼)

∞

0

𝑑𝑥 

=
𝛽ℎ+𝛼−𝑟−ℎ−𝛼+1−1

Γ(h + 𝛼)
∫ (𝑢)(𝑟+ℎ+𝛼)−1𝑒−𝑢

∞

0

𝑑𝑢 

=
𝛽−𝑟

Γ(h + 𝛼)
 Γ(h + r + 𝛼) 

𝜇𝑟
′ =

Γ(h+r+𝛼)

𝛽𝑟Γ(h+𝛼)
   ……. (B) 

By using  𝑟 = 1,2,3,4 in equation (B) and obtained 

the four moments about origin are: 

𝜇1
′ =

Γ(h + 𝛼 + 1)

𝛽Γ(h + 𝛼)
 

𝜇1
′ =

(h + 𝛼)

𝛽
 

𝜇2
′ =

(h+𝛼)(h+𝛼+1)

𝛽2    

𝜇3
′ =

(h + 𝛼)(h + 𝛼 + 1)(h + 𝛼 + 2)

𝛽3
 

𝜇4
′ =

(h + 𝛼)(h + 𝛼 + 1)(h + 𝛼 + 2)(h + 𝛼 + 3)

𝛽4
 

𝜇1 = 0 

𝜇2 =
(h + 𝛼)

𝛽2
 

𝜇3 =
2(h + 𝛼)

𝛽3
 

𝜇4 =
3{(𝛼 + ℎ)2 + 2(h + 𝛼)}

𝛽4  

𝛽1 =
4

ℎ+𝛼
  𝛾1 =

2

√ℎ+𝛼
 

𝛽2 =
3(ℎ+𝛼+2)

[ℎ+𝛼]3   𝛾2 =
3(ℎ+𝛼+2)−3[ℎ+𝛼]3

[ℎ+𝛼]3  

 

Size Biased Gamma Distribution: 

The pdf of two parameters SBGD is estimated by 

taking ℎ = 1 in eq. (1) 

𝑔(𝑥; 𝛼, 𝛽) =
𝛽𝛼+1. 𝑥1+𝛼−1𝑒−𝛽𝑥

Γ(𝛼 + 1)
  

𝑔(𝑥; 𝛼, 𝛽) =
𝛽𝛼+1. 𝑥𝛼𝑒−𝛽𝑥

Γ(𝛼 + 1)
 

 

 

𝜇𝑟
′ = 𝐸(𝑥𝑟) = ∫ 𝑥𝑟. 𝑔(𝑥; 𝛼, 𝛽)

∞

−∞

𝑑𝑥 

𝜇𝑟
′ = ∫ 𝑥𝑟.

𝛽𝛼+1. 𝑥𝛼𝑒−𝛽𝑥

Γ(𝛼 + 1)
  

∞

0

𝑑𝑥 

𝜇𝑟
′ =

𝛽𝛼+1

Γ(𝛼 + 1)
∫  𝑥𝛼+𝑟𝑒−𝛽𝑥 

∞

0

𝑑𝑥 

𝜇𝑟
′ =

Γ(𝛼+𝑟+1)

𝛽𝑟Γ(𝛼+1)
  ……. (C) 

By using  𝑟 = 1,2,3,4 in equation (C) and get: 

𝜇1
′ =

(𝛼 + 1)

𝛽
            𝜇2

′ =
(𝛼 + 1)(𝛼 + 2)

𝛽2
 

𝜇2
′ =

(𝛼 + 1)(𝛼 + 2)(𝛼 + 3)

𝛽3
 

𝜇4
′ =

(𝛼 + 1)(𝛼 + 2)(𝛼 + 3)(𝛼 + 4)

𝛽4
 

First four moments about mean are: 

𝜇1 = 0 

𝜇2 =
(𝛼 + 1)

𝛽2
               𝜇3 =

2(𝛼 + 1)

𝛽3
 

𝜇4 =
3{(𝛼 + 1)2 + 2(𝛼 + 1)}

𝛽4  

𝛽1 =
4

1+𝛼
  𝛾1 =

2

√1+𝛼
 

𝛽2 =
3(𝛼+3)

[1+𝛼]3   𝛾2 =
3(𝛼+3)−3[1+𝛼]3

[1+𝛼]3  
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Discordancy Test for Single Upper Outlier (k=1) 
The pdf of SBGD is, 

𝑔(𝑥; 𝛼, 𝛽) =
𝛽𝛼+1.𝑥𝛼𝑒−𝛽𝑥

Γ(𝛼+1)
  ;  𝑥 > 0, 𝛼 > 0, 𝛽 >

0 

 To evaluate the test statistic here fix 𝛼 = 1  in size 

biased Gamma distribution. To test of a single upper 

outlier which is called 𝑥𝑛 in a SBG sample. The 

hypothesis is  

𝐻0: 𝑥𝑖 𝜖 𝐺   𝑖 = 1,2,3, … , 𝑛  
Expose that total observations belong to the given 

distribution G with the density  

𝑔(𝑥; 𝛽) = 𝛽2𝑥𝑒−𝛽𝑥 ;  𝑥 > 0, 𝛽 > 0 

Consider have a slippage alternative hypothesis 𝐻1 

that (𝑛 − 1) of values are belonging to G and single 

observation called 𝑥𝑛 to SBGD 𝐺1with density  

𝑔(𝑥; 𝛽) =
𝛽2𝜃2𝑥𝑒−𝛽𝜃𝑥

Γ(2)
 ;  𝑥 > 0, 𝜃 < 1 

Here 𝜃 is a slippage parameter may written as 

𝐻0: 𝜃 = 1 

𝐻1: 𝜃 < 1 

The log likelihood function under 𝐻0 is 

�̂�𝐻0
(𝛽) = 2𝑛𝑙𝑛2 − 2𝑛𝑙𝑛�̅� + ∑ 𝑙𝑛 𝑥𝑖 + 2𝑛 

The log likelihood function under 𝐻1 is  

𝐿1(𝛽, 𝜃) = ∏ 𝛽2𝜃2𝑥𝑒−𝛽𝜃𝑥 

𝐿𝐻1
(𝛽, 𝜃) = 2𝑛𝑙𝑛𝛽 + 2𝑙𝑛𝜃 + ∑ 𝑙𝑛 𝑥𝑖

− 𝛽(𝑛 − 1)�̅�′ − 𝜃𝛽𝑥𝑛 

Where �̅�′ is sample mean of (n-1) observations. 

𝐿𝐻1
(𝛽) is maximized at �̂� =

2

�̅�′ and 𝜃 =
𝑥𝑛

�̅�′  if 𝑥𝑛 >

�̅�′ then, 

�̂�𝐻1
(𝛽, 𝜃) = 2𝑛𝑙𝑛2 − 2𝑛𝑙𝑛�̅�′ + 2𝑙𝑛𝑥𝑛 + ∑ 𝑙𝑛 𝑥𝑖

− 2𝑙𝑛�̅�′ + 2𝑛 

 The log likelihood ratio test is Λ̂ = (�̂�𝐻1
− �̂�𝐻0

). 

Given ratio equal to zero, if 𝑥𝑛 < �̅�′ while if  𝑥𝑛 >
�̅�′ then 

Λ̂ = 2𝑛𝑙𝑛�̅� − 2(𝑛 + 1)𝑙𝑛�̅�′ + 2𝑙𝑛𝑥𝑛 

 

Discordancy test for two upper outliers (k=2) 
The pdf of SBGD is , 

𝑔(𝑥; 𝛼, 𝛽) =
𝛽𝛼+1.𝑥𝛼𝑒−𝛽𝑥

Γ(𝛼+1)
  ;  𝑥 > 0, 𝛼 > 0, 𝛽 >

0 

 To develop the test statistic we fix 𝛼 = 1  in SBGD. 

For testing of two upper outlier called 𝑥𝑛 in a SBG 

sample. Our hypothesis is  

𝐻0: 𝑥𝑖 𝜖 𝐺   𝑖 = 1,2,3, … , 𝑛  

Declaring that all the observations belong to the 

distribution G with the density  

𝑔(𝑥; 𝛽) = 𝛽2𝑥𝑒−𝛽𝑥 ;  𝑥 > 0, 𝛽 > 0 

Consider having a slippage alternative hypothesis 𝐻1 

that (𝑛 − 2) of obtained values are  

 Significance 

level 

 Significance level 

n 5% 1% n 5% 1% 

5 2.4562 2.4495 18 6.995 7.8346 

6 2.9836 2.9478 19 7.2471 8.2111 

7 3.3227 3.4243 20 7.4992 8.5876 

8 3.7562 3.9264 25 8.6745 9.7680 

9 4.1603 4.3173 30 9.6342 10.9422 

10 4.5404 4.7676 35 10.5939 12.0431 

11 8.0633 9.1528 40 11.5536 13.1706 

12 5.1698 5.5517 50 12.7330 15.0267 

13 5.4589 5.8881 60 13.8447 16.7249 

14 5.7276 6.3714 70 14.7999 17.4936 

15 6.1182 6.7692 80 15.8601 18.2731 

16 6.4908 7.0816 90 16.4811 20.6997 

17 6.7429 7.4541 100 18.1383 21.2467 

 

belonging to G and one observation say 𝑥𝑛−1 to 

SBGD 𝐺1with density  

𝑔(𝑥; 𝛽) =
𝛽2𝜃2𝑥𝑒−𝛽𝜃𝑥

Γ(2)
 ;  𝑥 > 0, 𝜃 < 1 

Here 𝜃 is a slippage parameter may write as 

𝐻0: 𝜃 = 1 

𝐻1: 𝜃 < 1 

The log likelihood function under 𝐻0 is 

𝐿𝐻0
(𝛽) = 2𝑛𝑙𝑛𝛽 + ∑ 𝑙𝑛 𝑥𝑖 − 𝛽𝑛�̅� 

Where �̅� is sample mean of total values. 𝐿𝐻0
(𝛽) is 

maximized at 𝛽 =
2

 �̅� 
 

So, 

�̂�𝐻0
(𝛽) = 2𝑛𝑙𝑛2 − 2𝑛𝑙𝑛�̅� + ∑ 𝑙𝑛 𝑥𝑖 − 2𝑛 

The log likelihood function under 𝐻1 is  

𝐿1(𝛽) = ∏ 𝛽2𝜃2𝑥𝑒−𝛽𝜃𝑥 

𝐿𝐻1
(𝛽, 𝜃) = 2𝑛𝑙𝑛𝛽 + 4𝑙𝑛𝜃 + ∑ 𝑙𝑛 𝑥𝑖

− 𝛽(𝑛 − 2)�̅�′ − 2𝜃𝛽�̅�′′ 

Where �̅�′ is sample mean of (n-2) values and, �̅�′′ =
𝑥𝑛+𝑥𝑛−1

2
. 𝐿𝐻1

(𝛽, 𝜃) Is maximized at �̂� =
2

�̅�′ and 𝜃 =

�̅�′′

�̅�′  if �̅�′′ > �̅�′ then, 

�̂�𝐻1
(𝛽, 𝜃) = 2𝑛𝑙𝑛2 − 2𝑙𝑛�̅�′ + 4𝑙𝑛�̅�′′ + ∑ 𝑙𝑛 𝑥𝑖

− 2𝑙𝑛�̅�′ + 2𝑛 
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 The LLRT is,Λ̂ = (�̂�𝐻1
− �̂�𝐻0

). Given ratio equal to 

zero if �̅�′′ < �̅�′ while if  �̅�′′ > �̅�′ then 

Λ̂ = 2𝑛𝑙𝑛�̅� − 4𝑙𝑛�̅�′ + 4𝑙𝑛�̅�′′ − 2𝑙𝑛�̅�′ 

Λ̂ = 2𝑛𝑙𝑛�̅� − 2(2𝑛 + 1)𝑙𝑛�̅�′ + 4𝑙𝑛�̅�′′ 

 

 

Area Biased Gamma Distribution: 

The pdf of two parameters ABGD is obtained by 

taking ℎ = 2 in eq. (1) 

𝑔(𝑥; 𝛼, 𝛽) =
𝛽𝛼+2. 𝑥2+𝛼−1𝑒−𝛽𝑥

Γ(𝛼 + 2)
   

𝑔(𝑥; 𝛼, 𝛽) =
𝛽𝛼+2. 𝑥𝛼+1𝑒−𝛽𝑥

Γ(𝛼 + 2)
 

 
 

 

𝜇𝑟
′ = 𝐸(𝑥𝑟) = ∫ 𝑥𝑟. 𝑔(𝑥; 𝛼, 𝛽)

∞

−∞

𝑑𝑥 

𝜇𝑟
′ = ∫ 𝑥𝑟.

𝛽𝛼+2. 𝑥𝛼+1𝑒−𝛽𝑥

Γ(𝛼 + 2)
  

∞

0

𝑑𝑥 

𝜇𝑟
′ =

𝛽𝛼+2

Γ(𝛼 + 2)
∫  𝑥𝛼+𝑟+1𝑒−𝛽𝑥 

∞

0

𝑑𝑥 

𝜇𝑟
′ =

𝛽𝛼+2

𝛽𝛼+𝑟+2Γ(𝛼 + 2)
∫  𝑤(𝛼+𝑟+2)−1𝑒−𝑤 

∞

0

𝑑𝑤 

𝜇𝑟
′ =

Γ(𝛼+𝑟+2)

𝛽𝑟Γ(𝛼+2)
  ……. (D) 

By using  𝑟 = 1,2 in equation (D) and get: 

𝜇1
′ =

(𝛼 + 2)

𝛽
 

𝜇2
′ =

(𝛼 + 2)(𝛼 + 3)

𝛽2
 

𝜇3
′ =

(𝛼 + 2)(𝛼 + 3)(𝛼 + 4)

𝛽3
 

𝜇4
′ =

(𝛼 + 2)(𝛼 + 3)(𝛼 + 4)(𝛼 + 5)

𝛽4
 

First four moments about mean are:  

𝜇1 = 0 

𝜇2 =
(𝛼 + 2)(𝛼 + 3)

𝛽2
− (

𝛼 + 2

𝛽
)2 

𝜇2 =
(𝛼 + 2)

𝛽2
 

𝜇3 =
2(𝛼 + 2)

𝛽3
 

𝜇4 =
3(𝛼2 + 8𝛼 + 8)

𝛽4  

𝛽1 =
4

𝛼+2
  𝛾1 =

2

√𝛼+2
 

𝛽2 =
3(𝛼+4)

[𝛼+2]3   𝛾2 =
3(𝛼+4)−3[𝛼+2]3

[𝛼+2]3  

 

 

Discordancy Test for Single Upper Outlier (k=1) 

To develop the test statistic we fix 𝛼 = 1 in ABGD. 

To testing of upper single outlier called 𝑥𝑛 in ABG 

sample. Null hypothesis is 

𝐻0: 𝑥𝑖 𝜖 𝐺   𝑖 = 1,2,3, … , 𝑛  
Claimed that total observations belonging to 

distribution G with density 

𝑔(𝑥; 𝛼, 𝛽) =
𝛽3𝑥2𝑒−𝛽𝑥

2
 ; 𝑥 > 0, 𝛽 > 0 

Consider having a slippage alternative hypothesis 

𝐻1 which (𝑛 − 1) of data are belonging to G and 

single value called 𝑥𝑛 to ABGD 𝐺1with density  

𝑔(𝑥; 𝛼, 𝛽) =
𝛽3𝜃3𝑥2𝑒−𝛽𝜃𝑥

2
;  𝑥 > 0, 𝜃 < 1 
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Here 𝜃 is a slippage parameter may write as 

𝐻0: 𝜃 = 1 

𝐻1: 𝜃 < 1 

The log likelihood function under 𝐻0 is 

𝐿𝐻0
(𝛽) = 3𝑛𝑙𝑛𝛽 + 2 ∑ 𝑙𝑛 𝑥𝑖 − 𝛽𝑛�̅� − 𝑛𝑙𝑛2 

Where �̅� is sample mean of total values. 𝐿𝐻0
(𝛽) Is 

maximized at 𝛽 =
3

 �̅� 
 

So, 

�̂�𝐻0
(𝛽) = 3𝑛𝑙𝑛3 − 3𝑛𝑙𝑛�̅� + 2 ∑ 𝑙𝑛 𝑥𝑖 − 3𝑛

− 𝑛𝑙𝑛2 

The log likelihood function under 𝐻1 is  

𝐿1(𝛽) = ∏
𝛽3𝜃3𝑥2𝑒−𝛽𝜃𝑥

2
 

𝐿𝐻1
(𝛽, 𝜃) = 3𝑛𝑙𝑛𝛽 + 3𝑙𝑛𝜃 + 2 ∑ 𝑙𝑛 𝑥𝑖

− 𝛽(𝑛 − 1)�̅�′ − 𝜃𝛽𝑥𝑛 

Where �̅�′ is sample mean of (n-1) values. 𝐿𝐻1
(𝛽, 𝜃) 

Is maximized at �̂� =
3

�̅�′ and 𝜃 =
𝑥𝑛

�̅�′  while 𝑥𝑛 > �̅�′ 

then, 

�̂�𝐻1
(𝛽, 𝜃) = 3𝑛𝑙𝑛3 − 3𝑙𝑛�̅�′ + 3𝑙𝑛𝑥𝑛 + 2 ∑ 𝑙𝑛 𝑥𝑖

− 3𝑛𝑙𝑛�̅�′ − 𝑛𝑙𝑛2 + 2𝑛 

The LLRT isΛ̂ = (�̂�𝐻1
− �̂�𝐻0

). Given ratio equal to 

zero, when 𝑥𝑛 < �̅�′ but if  𝑥𝑛 > �̅�′ then 

Λ̂ = 3𝑛𝑙𝑛�̅� − 3(𝑛 + 1)𝑙𝑛�̅�′ + 3𝑙𝑛𝑥𝑛 
Sample 

size 

Significance level  Significance level 

n 5% 1% n 5% 1% 

5 4.9587 4.9743 18 15.2535 16.7497 

6 5.8583 5.8801 19 15.3531 17.6555 

7 6.7579 6.7859 20 16.3962 18.5613 

8 7.6575 7.6917 25 19.1354 22.0986 
9 8.5571 8.5975 30 21.8746 25.7284 

10 9.4567 9.5033 35 24.6138 29.1742 

11 10.3563 10.4091 40 27.353 31.9256 

12 11.2559 11.3149 50 30.9522 37.5621 

13 12.1555 12.2207 60 35.8477 43.1957 

14 13.0551 13.1265 70 39.7432 48.1465 

15 13.2547 14.0323 80 44.0587 58.7472 

16 13.7543 14.9381 90 45.0142 59.8342 

17 14.3539 15.8439 100 48.8697 63.1538 

 

Discordancy Test for Single Upper Outlier (k=2) 

To develop the test statistic we fix 𝛼 = 1 in Area 

Biased Gamma distribution. For testing of two upper 

outlier say 𝑥𝑛 in Area Biased Gamma sample. Our 

hypothesis is 

𝐻0: 𝑥𝑖 𝜖 𝐺   𝑖 = 1,2,3, … , 𝑛  
Claimed that total observations belonging to the 

distribution G with density 

𝑔(𝑥; 𝛼, 𝛽) =
𝛽3𝑥2𝑒−𝛽𝑥

2
 ; 𝑥 > 0, 𝛽 > 0 

Consider having a slippage alternative hypothesis 𝐻1 

which is (𝑛 − 2) of given data belonging to G and 

one observation say 𝑥𝑛−1 to ABGD 𝐺1with density  

𝑔(𝑥; 𝛼, 𝛽) =
𝛽3𝜃3𝑥2𝑒−𝛽𝜃𝑥

2
;  𝑥 > 0, 𝜃 < 1 

Here 𝜃 is a slippage parameter may write as 

𝐻0: 𝜃 = 1 

𝐻1: 𝜃 < 1 

The log likelihood function under 𝐻0 is 

𝐿𝐻0
(𝛽) = 3𝑛𝑙𝑛𝛽 + 2 ∑ 𝑙𝑛 𝑥𝑖 − 𝛽𝑛�̅� − 𝑛𝑙𝑛2 

Where �̅� is sample mean of all observations. 𝐿𝐻0
(𝛽) 

is maximized at 𝛽 =
3

 �̅� 
 

So, 

�̂�𝐻0
(𝛽) = 3𝑛𝑙𝑛3 − 3𝑛𝑙𝑛�̅� + 2 ∑ 𝑙𝑛 𝑥𝑖 − 3𝑛

− 𝑛𝑙𝑛2 

The log likelihood function under 𝐻1 is  

𝐿1(𝛽) = ∏
𝛽3𝜃3𝑥2𝑒−𝛽𝜃𝑥

2
 

𝐿𝐻1
(𝛽, 𝜃) = 3𝑛𝑙𝑛𝛽 + 6𝑙𝑛𝜃 + 2 ∑ 𝑙𝑛 𝑥𝑖

− 𝛽(𝑛 − 2)�̅�′ − 2𝜃𝛽�̅�′′ 

 Where �̅�′ is sample mean of (n-2) observations and 

�̅�′′ =
𝑥𝑛+𝑥𝑛−1

2
. 𝐿𝐻1

(𝛽, 𝜃) is maximized at �̂� =
3

�̅�′ and 

𝜃 =
�̅�′′

�̅�′  if �̅�′′ > �̅�′ then, 

�̂�𝐻1
(𝛽, 𝜃) = 3𝑛𝑙𝑛3 − 6𝑙𝑛�̅�′ + 4𝑙𝑛�̅�′′ + 2 ∑ 𝑙𝑛 𝑥𝑖

− 3𝑙𝑛�̅�′ + 3𝑛 

The LLRT is Λ̂ = (�̂�𝐻1
− �̂�𝐻0

). Given ratio equal to 

zero, if �̅�′′ < �̅�′ while if  �̅�′′ > �̅�′ then 

Λ̂ = 3𝑛𝑙𝑛�̅� − 3(2𝑛 + 1)𝑙𝑛�̅�′ + 6ln (
𝑥𝑛 + 𝑥𝑛−1

2
) 

 
Sample 

size 

Significance 

level 

Sample 

size 

Significance level 

n 5% 1% n 5% 1% 

5 2.4998 2.4898 18 8.7177 8.6984 

6 2.9781 2.9869 19 9.196 9.1204 

7 3.4564 3.484 20 9.6743 9.6424 

8 3.9347 3.9811 25 10.9415 11.7644 

9 4.413 4.4782 30 12.7587 13.936 

10 4.8913 4.9753 35 14.5759 15.7775 

11 5.3696 5.4724 40 16.2931 17.7365 

12 5.8479 5.9695 50 19.1224 21.2529 

13 6.3262 6.3666 60 21.7517 24.2729 

14 6.8045 6.8637 70 24.1781 27.8965 

15 7.2828 7.3608 80 26.9103 31.2145 

16 7.7611 7.8579 90 28.5396 33.4378 

17 8.2394 8.2455 100 30.3689 36.1837 
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Summary  

This research underscores the importance of 

simulation and discordancy tests in assessing the 

impact of outliers. Moment distributions, particularly 

relevant for forestry and engineering, offer robust 

analytical tools. The Gamma distribution stands out 

in forestry research due to its wide usage. 

Instrumental errors can distort data, affecting its 

shape and scale, potentially leading to 

misinterpretation and flawed results if outliers are 

not properly addressed. 

Recognizing outliers before proceeding with 

analysis and modeling is crucial. While much 

attention has been given to univariate probability 

distributions, this study focuses on identifying 

outliers in univariate moment distributions. Two 

discordancy tests are devised for outlier detection, 

supported by simulation studies for critical value 

determination. 

Graphical representations illustrate how data 

behavior varies with parameter values. Moment 

distributions, often used as size-biased and aera-

biased in research, are employed here, specifically 

the Gamma distribution, for outlier detection and 

parameter estimation. The study compares the outlier 

detection capabilities of four strategies through 

simulation, using tests of different sizes from various 

moment distributions. This comprehensive approach 

acknowledges that a single test may not fully capture 

strategy performance, necessitating a comparative 

analysis. 

Ultimately, this research contributes to 

refining outlier detection methodologies in moment 

distributions, providing valuable insights for fields 

reliant on accurate data analysis. By leveraging 

simulation and rigorous testing, it enhances the 

reliability and robustness of analytical techniques, 

facilitating more accurate inferences and decision-

making processes. 
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