#### PIECE WISE KAPLAN-MEIER SURVIVAL FUNCTION FOR DEPENDENT DISEASES

Qamruz Zaman<sup>\*1</sup>, Danish Wasim<sup>2</sup>, Syed Habib Shah<sup>3</sup>, Neelam<sup>4</sup>, Atta Ur Rehman<sup>5</sup>, Mohib Ullah Khan<sup>6</sup>, Asma Qureshi<sup>7</sup>

\*1,4,5,6,7 Department of Statistics University of Peshawar, Pakistan;
 <sup>2</sup>Department of Statistics, Government Superior Science College Peshawar, Pakistan;
 <sup>3</sup>Institute of Numerical Sciences Kohat University of Science and Technology

\*1qamruzzaman@uop.edu.pk; <sup>2</sup>danishwasim.std@icp.edu.pk; <sup>3</sup>habibshah@kust.edu.pk; <sup>4</sup>neelam\_arbab@uop.edu.pk; <sup>5</sup>attabaqi11@gmail.com; <sup>6</sup>mohibullahkhan578@gmail.com; <sup>7</sup>kamikhan87993@gmail.com

| Corresponding Author:         | *                       |                          |                          |
|-------------------------------|-------------------------|--------------------------|--------------------------|
| <b>Received:</b> 11 May, 2024 | Revised: 13, June, 2024 | Accepted: 24, June, 2024 | Published: 29 June, 2024 |

#### ABSTRACT

One of the assumptions of censoring in Kaplan-Meier Survival Function is independency i.e. disease under study must be independent but in real world, the situation is entirely different. In this case relative risk factors i.e. dependency plays an important role. To overcome this problem a new estimator called the Piece wise Kaplan-Meier Survival Function was developed and discussed in detail. Similarly, for measuring the variation, new variance estimator based on the Piece wise Kaplan-Meier Survival Function was introduced. Similarly, with the help of Greenwood Variance estimator and new variance estimator 95 Confidence Intervals are constructed. Results of the analysis showed that the Kaplan-Meier gives the overestimate results as compared to the new procedure. New procedures consider the competing risk factor and give more satisfactory results.

#### 1. INTRODUCTION

Survival analysis is the backbone of biostatistics. In survival study, we generally refer to the time variable as survival time, because it gives the time that an individual has" survived" over some follow up period. We also normally refer to the occasion as a failure, because the event of interest usually is death However, survival time might be "an ideal opportunity to come back to work after an elective surgery," in which case failure is a positive event. In survival study, there is an inadequate data on survival time of a patient. The response variable in survival analysis is the time till the event happens [1-2].

This incomplete data about the patient survival time known as censoring. Censoring is accessible when we have some data about a subject's occasion time, yet we don't identify about the specific occasion time. For the analysis strategies we will talk about to be effective, censoring system must be autonomous of the survival component. There are three types of censoring. Censor observation can be right, left or interval censor observations [3]. The most famous approach of survival analysis is the nonparametric modelling.

#### Nonparametric Modeling

The standard non-parametric Model approaches survey ordinal scale of measurement i.e. ordered/rank data are not directly appropriate in occurrence of censored observations. Particularly, a histogram or an empirical cumulative distribution function cannot be used with censored information. As a method of estimation survivor function used Kaplan-Meier (KM) survival function is a nonparametric modelling technique. These do exclude the impacts of covariates and requires just a requesting of the chance to failure (or censoring).

#### 1. Kaplan-Meier (KM) Estimator

Kaplan-Meier is the product limit estimator introduced by (Kaplan and Meier) in 1958. This is the

most popular technique in nonparametric procedures [4].KM is considered as the backbone of survival analysis. The function is defined as Let X1, X2, ..., Xn be the event times having distribution F(x) and  $C_{1,}C_{2},C_{3}, ..., C_{n}$  denote the censoring time having distribution G(x).Then  $Ti = min \{Xi, Ci\}$  be the observed survival time. Let  $n_{i}$  and  $d_{i}$  denote the number of persons at risk at time i and the number of deaths respectively. The KM estimator is defined as

$$S^{\wedge}(t) = \prod_{i=1}^{n} \left( 1 - \frac{d_i}{n_i} \right)$$

The Kaplan-Meier estimator is the most simple method of recording the survival after some time regardless of every one of these troubles related with subjects or conditions. The survival curve can be made accepting different conditions. It includes recording of probabilities of occurrence of event at one point of time and repeating these succeeding probabilities by any previous calculated probabilities to get the last estimator. This can be determined for two sets of subjects and their statistical difference in the survivals.

The KM technique is used in univariate case and is based on the independent censoring assumption. The Greenwood [5] variance estimator formula is used to calculate the variance of K-M function is given by

$$\hat{V} ar_{Gr} \left[ \hat{S(t)} \right] = \hat{S(t)}^2 \left( \sum_{i=1}^n \frac{d_i}{n_i(n_i - d_i)} \right)$$

1.1 Greenwood's Variance Estimator

Greenwood's formula sets a s error on the K.M estimator utilizing the delta technique at a specific time t through a failure, Suppose  $N_t$  be the quantity of subjects on test "at time t-," that is, not long before time t. The likelihood of making due from t- to t+ is evaluated as /Nt, where Xt is the number who make due from t- to t+. The Kaplan-Meir estimator is

$$T \to \prod_{t < T} \frac{X_t}{N_t} X_t$$

 $X_t$  displayed as independent binomial  $B(N_t,P_t)$  variables. Independence is clearly off-base, chance of failure times is overlooked, and concealed irregularity—nonattendance of failure between viewed failure times—is disregarded. Limited example, this is nothing but bad. Asymptotically, under conditions, may be fine. Anyway, we make the displaying assumptions.

Suppose  $\hat{K}$  represents the product with K expected value.

$$\frac{\frac{\hat{K}}{K}}{\frac{X_t - N_t P_t}{N_t P_t}} = \prod \left( 1 + \sum \frac{X_t - N_t P_t}{N_t P_t} \right)$$

 $N_t P_t$  )  $N_t P_t$  are for the maximum part. So

$$var\left(\frac{\hat{K}}{K}\right) \approx \sum \frac{1-P_t}{N_t P_t} \approx \sum \frac{1-\hat{P}_t}{N_t \hat{P}_t}$$

 $P_t$  represents the survival probability, where as  $\hat{P}_t$  shows the estimated survival probability. Therefore,

$$var\left(\widehat{K}\right) \approx K^{2} \sum_{t} \frac{1-\widehat{P}_{t}}{N_{t}\widehat{P}_{t}} \approx \widehat{K}^{2} \sum_{t} \frac{1-\widehat{P}_{t}}{N_{t}\widehat{P}_{t}}$$

Greenwood's Formula.

N(1, 
$$\sum \frac{1-\hat{P}_t}{N_t \hat{P}_t}$$
)

**Confidence Intervals.** 

$$\log \widehat{K} = \log K + \sum \log \left( 1 + \frac{X_t - N_t p_t}{N_t p_t} \right) \approx \log K + \sum \frac{X_t - N_t p_t}{N_t p_t} ( ) ( )$$
  
So

$$var(\log \widehat{K}) \approx \sum \frac{1-\widehat{P}_t}{N_t \widehat{p}_t}$$

1.2 Need of the Study

The techniques of survival analysis are based on the assumptions that diseases are independent i.e. if a person has both weight and cholesterol problems. According to the non-parametric assumption, these are independent and there is no relation between them. In real world, there is a strong relation between them. So far no method is available in literature to deal with the problem of dependent diseases. The Kaplan-Meier survival function and the other extensions of the function are based on the independent assumption. The purpose of this research is to deal with problem.

#### 1.3 Aims and Objectives

Following are the main aims and objectives of the study.

- To develop a Kaplan-Meier survival function for dependent cases
- To develop the variance of the new estimator
- To assess the performance of the estimator using real data set

#### 2. METHODOLOGY

#### PIECE WISE KAPLAN-MEIER SURVIVAL FUNCTION AND ITS VARIANCE

A Piece wise Kaplan-Meier Estimator and its variance estimator will be discussed in this chapter to overcome the problem of dependent disease. The

concept of survival analysis is useless without constructing the survival probabilities using Kaplan-Meier (KM) technique. For the calculation of confidence interval of KM estimator, different variance estimators are used proposed by different researchers. Some of them are Zaman et.al. [5], Zaman et.al. [6], Zaman et.al. [7], Zaman et.al. [8], Borkowf [8]. Zhao [9], Peto [10] and Greenwood [11]. But all these methods based on the assumption of independent censoring. To overcome the problem , the following procedure is adopted.

Let  $d_{11}, d_{12}, \ldots, d_{1n}$  denote the event time of disease 1 and let  $C_{11}, C_{,12}, \ldots, C_{1n}$  denote the censoring time due to disease 1.  $d_{21}, d_{22}, \ldots, d_{2n(n-1)}$  and  $C_{21}, C_{22}, \ldots$ ,  $C_{2(n-2)}$  denote the event and censoring times due to disease 2. Similarly,  $d_{31}, d_{32}, \ldots, d_{3(n-2)}$  and  $C_{31}, C_{32}, \ldots$  $\ldots, C_{3(n-3)}$  are used for event and censoring time for disease 3 and so on. The information is summarized in the following table 1.

|                |                 | Disease 1       | ]                   | Disease 2           |                     |                     |        |
|----------------|-----------------|-----------------|---------------------|---------------------|---------------------|---------------------|--------|
| Time           | Event           | Censoring       | Event               | Censoring           | Event               | Censoring           | And    |
| T <sub>1</sub> | d <sub>11</sub> | C <sub>11</sub> | d <sub>21</sub>     | C <sub>21</sub>     | d <sub>31</sub>     | C <sub>31</sub>     | so on. |
| T <sub>2</sub> | d <sub>12</sub> | C <sub>12</sub> | d <sub>22</sub>     | C <sub>22</sub>     | d <sub>32</sub>     | C <sub>32</sub>     |        |
| T <sub>3</sub> | d <sub>13</sub> | C <sub>13</sub> | d <sub>23</sub>     | C <sub>23</sub>     | d <sub>33</sub>     | C <sub>33</sub>     |        |
| :              | :               | :               | :                   | :                   | :                   | :                   |        |
| T <sub>n</sub> | d <sub>1n</sub> | C <sub>1n</sub> | d <sub>2(n-1)</sub> | C <sub>2(n-2)</sub> | d <sub>3(n-2)</sub> | C <sub>3(n-3)</sub> |        |

Table 1 : Layout for the Piecewise Survival Function

On the basis of the above information an extension of KM is developed. The new method which is called the Piece wise Kaplan-Meier Survival Function gives us the survival probabilities each disease. Similarly, for the new developed survival function, the variance estimator is developed using the commutative property of addition. For detail illustration,

Let  $t_1, t_2, \ldots, t_{11}$  denote the observed times corresponding to  $d_1, d_2, \ldots, d_{11}$  deaths and  $c_1, c_2, \ldots, d_{12}$ c<sub>11</sub>are the observed censoring times respectively. Suppose the censoring is not independent and the data consists of two diseases namely disease I and disease II. Out of these 11 observed times, only 4 deaths namely at  $d_{11}$ ,  $d_{14}$ ,  $d_{16}$  and  $d_{110}$  and  $c_{12}$ ,  $c_{15}$  and  $c_{19}$  are independently censored i.e leave the study without any reason along with the number of persons at risks are  $n_{11}$ ,  $n_{14}$ ,  $n_{16}$  and  $n_{110}$ . After the follow-up for period of time, it is observed that 3 deaths/events occurred due to disease II at d<sub>23</sub>, d<sub>28</sub> and d<sub>211</sub> along with one censored observation c27 and the number of persons at risks are n<sub>23</sub>, n<sub>28</sub> and n<sub>211</sub> respectively. Survival probability of disease I is calculated, which changes for each event and remains constant for others. The products of theses give the survival probability  $S_1(t)$  for disease I, similar procedure is adopted for disease II. The products of these probabilities namely;  $S_1(t)$  and  $S_2(t)$  give the Piecewise Kaplan-.Meier Survival Function. This function gives the probabilities, which must be smaller than the conventional probabilities. The reason is that the KM method considered only one disease ignoring severity of the other disease, which obviously decrease the life expectancy and as a result the survival probabilities decreases. The procedure can also be explained through the following flowchart/ Figure 1.



Figure1: Illustration of the Piecewise Kaplan-Meier Survival Function through flowchart.



The procedure can also be extended two three or more diseases too. This can be done as in Figure 2. Figure 2: Piece wise Kaplan-Meier Survival Function for three diseases

2.1 Piece wise Variance estimator

For the purpose of illustration the table 2 is shrinked in the following form

|                 |                  |                 |                         |                            | Disease                                              | [                                                          |                         |                         |                 | Di               | sease I                                               |                                                    |                      |                                        |
|-----------------|------------------|-----------------|-------------------------|----------------------------|------------------------------------------------------|------------------------------------------------------------|-------------------------|-------------------------|-----------------|------------------|-------------------------------------------------------|----------------------------------------------------|----------------------|----------------------------------------|
| Time            | d <sub>1i</sub>  | c <sub>1i</sub> | n <sub>1i</sub>         | S <sub>1</sub> (T)         | $\frac{d_{1i}}{n_{1i} (n_{1i} - d_{1i})}$            | Sum1                                                       | GW <sub>v</sub>         | d <sub>2i</sub>         | c <sub>2i</sub> | n <sub>2i</sub>  | $\frac{d_{2i}}{n_{2i}\left(n_{2i}-d_{2i}\right)}$     | Sum2                                               | $S_c(t)^2$           | Piece wise<br>Variance<br>Estimator    |
| t <sub>1</sub>  | d <sub>11</sub>  |                 | n <sub>11</sub>         | S <sub>11</sub> (T)        | $\frac{d_{11}}{n_{11} \left(n_{11} - d_{11}\right)}$ | $Sum11= \frac{d_{11}}{n_{11}(n_{11}-d_{11})}$              | V <sub>G1</sub>         |                         |                 |                  |                                                       | Sum21                                              | $S_{c1}(T)^2$        | $V_1 = Sc11(T)^{2*}(Sum11+Sum21)$      |
| t <sub>2</sub>  |                  | c <sub>12</sub> |                         | S <sub>12</sub> (t)        |                                                      | Sum12=sum11+0                                              | V <sub>G2</sub>         |                         |                 |                  |                                                       | Sum22=<br>Sum21+                                   | $S_{c2}(T)^2$        | $V_2=S_{c12}(T)^{2*}(Sum11+Sum21)$     |
| t <sub>3</sub>  |                  |                 |                         | <b>S</b> <sub>13</sub> (t) |                                                      | Sum13                                                      | V <sub>G3</sub>         | d <sub>23</sub>         |                 | n <sub>23</sub>  | $\frac{d_{23}}{n_{23}\left(n_{23}-d_{23}\right)}$     | $Sum23=Sum22+\frac{d_{23}}{n_{23}(n_{23}-d_{23})}$ | S <sub>c3</sub> (T)2 | $V_3=S_{c13}(T)2*(Sum11+Sum21)$        |
| t <sub>4</sub>  | d <sub>14</sub>  |                 | n <sub>14</sub>         | S <sub>14</sub> (t)        | $\frac{d_{14}}{n_{14}(n_{14}-d_{14})}$               | $\frac{\text{Sum14}=\text{sum13}+}{n_{14}(n_{14}-d_{14})}$ | V <sub>G4</sub>         |                         |                 |                  |                                                       | Sum24                                              | $S_{c4}(T)^2$        | $V_4=S_{c14}(T)^{2*}(Sum11+Sum21)$     |
| t <sub>5</sub>  |                  | c <sub>15</sub> |                         | S <sub>15</sub> (t)        |                                                      | Sum15                                                      | V <sub>G5</sub>         | 5                       | U.              |                  |                                                       | Sum25                                              | $S_{c5}(T)^2$        | $V_5=S_{c15}(T)^{2*}(Sum11+Sum21)$     |
| t <sub>6</sub>  | d <sub>16</sub>  |                 | n <sub>16</sub>         | S <sub>16</sub> (t)        | $\frac{d_{16}}{n_{16}(n_{16}-d_{16})}$               | Sum16                                                      | V <sub>G6</sub>         | irnal of Cont<br>clence | emporary        |                  |                                                       | Sum26                                              | $S_{c6}(T)^2$        | $V_6=S_{c16}(T)^{2*}(Sum11+Sum21)$     |
| t7              |                  |                 |                         | S <sub>17</sub> (t)        |                                                      | Sum17                                                      | V <sub>G7</sub>         |                         | C <sub>27</sub> |                  |                                                       | Sum27                                              | $S_{c7}(T)^2$        | $V_7=S_{c17}(T)^{2*}(Sum11+Sum21)$     |
| t <sub>8</sub>  |                  |                 |                         | S <sub>18</sub> (t)        |                                                      | Sum18                                                      | $V_{G8}$                | d <sub>28</sub>         |                 |                  | $\frac{d_{28}}{n_{28}\left(n_{28}-d_{28}\right)}$     | Sum28                                              | $S_{c8}(T)^2$        | $V_8=S_{c18}(T)^{2*}(Sum11+Sum21)$     |
| t9              |                  | c <sub>19</sub> |                         | S <sub>19</sub> (t)        |                                                      | Sum19                                                      | V <sub>G9</sub>         |                         |                 |                  |                                                       | Sum29                                              | $S_{c9}(T)^2$        | $V_9 = S_{c19}(T)^{2*}(Sum11+Sum21)$   |
| t <sub>10</sub> | d <sub>110</sub> |                 | <b>n</b> <sub>110</sub> | S <sub>110</sub> (t)       | $\frac{d_{110}}{n_{110}(n_{110}-d_{110})}$           | Sum10                                                      | <b>V</b> <sub>G10</sub> |                         |                 |                  |                                                       | Sum210                                             | $S_{c10}(T)^2$       | $V_{10}=S_{c110}(T)^{2*}(Sum11+Sum21)$ |
| t <sub>11</sub> |                  |                 |                         | S <sub>111</sub> (t)       |                                                      | Sum11                                                      | <b>V</b> <sub>G11</sub> | d <sub>211</sub>        |                 | n <sub>211</sub> | $\frac{d_{211}}{n_{211}\left(n_{211}-d_{211}\right)}$ | Sum211                                             | $S_{c111}(T)^2$      | $V_{11}=S_{c111}(T)^{2*}(Sum11+Sum21)$ |

Table 2 : Illustration of the new variance estimator through eleven observations.

For the calculation of the Piece wise variance estimator in case of two diseases, the calculations are divided into fifteen columns. For the calculations of variance, the ratio of deaths to the product of number of persons at risk into the difference of the number of Persons at risks to the number of deaths at that time was summarized into two columns. Column VI is used for the calculations of Greenwood Variance estimator and column XII for the Piecewise variance estimator. Column VII gives the cumulative sum of column VI. Similarly, the cumulative sum of disease II is written in column XIII. The square of Piecewise Survival Function is given in column XIV. The last column gives the variance of Piecewise Estimator, which is equal to the product of the square of piecewise Survival Function into the sum of columns VII and XIII. This can be easily explained through the following flowchart/Figure 3.



Figure 3: Illustration of the Piecewise Variance estimator through flowchart

The procedure can also be extended two three or more diseases too. This can be done as in Figure: 4.



Figure 4: Illustration of the Piecewise Variance estimator for three diseases

#### **REAL DATA ANALYSIS**

A data of 119 thalassemia patients was collected during April 2019 to September 2019 from Fatimid Foundation [12] Peshawar branch, with the help of staff members, doctors, patients, medical records and parents. The major disease of interest was the thalassemia but after detailed study of the disease, it came out that the disease creates the heart problem i.e. the disease is not independent but related with heart disease too. So, the competing risk plays an important role in this case.

#### **5 DESCRIPTION OF 119 PATIENTS**

- Fatimid Foundation, A symbol of hopes Pakistan. A Charitable Organization. Established **1981**.
- For the analysis purpose, the data from the Fatimid Foundation was collected based on 119 patients.
- The complete data is summarized below (Table 3):

| Table 5 | • 1 maia              | ssenna                | Data                  | Ju         |       |                       |                                 |                       |            |     |            |            |                       |            |
|---------|-----------------------|-----------------------|-----------------------|------------|-------|-----------------------|---------------------------------|-----------------------|------------|-----|------------|------------|-----------------------|------------|
| t       | <b>d</b> <sub>1</sub> | <b>c</b> <sub>1</sub> | <b>d</b> <sub>2</sub> | <b>C</b> 2 | t     | <b>d</b> <sub>1</sub> | <b>c</b> <sub>1</sub>           | <b>d</b> <sub>2</sub> | <b>C</b> 2 | t   | <b>d</b> 1 | <b>c</b> 1 | <b>d</b> <sub>2</sub> | <b>C</b> 2 |
| 12      | 1                     |                       | 0                     | 0          | 15+   | 0                     | 1                               | 0                     | 0          | 17  | 1          |            | 0                     | 0          |
| 19      | 0                     |                       | 1                     |            | 22    | 1                     |                                 | 0                     | 0          | 24  | 1          |            | 0                     | 0          |
| 25      | 0                     |                       | 0                     | 1          | 27    | 1                     |                                 | 0                     | 0          | 29+ | 0          | 1          | 0                     | 0          |
| 30      | 0                     |                       | 1                     |            | 33    | 1                     |                                 | 0                     | 0          | 36  | 1          |            | 0                     | 0          |
| 37      | 1                     |                       | 0                     | 0          | 38    | 0                     |                                 | 0                     | 1          | 39+ | 0          | 1          | 0                     | 0          |
| 42      | 0                     |                       | 1                     |            | 44    | 1                     |                                 | 0                     | 0          | 47  | 1          |            | 0                     | 0          |
| 49+     | 0                     | 1                     | 0                     | 0          | 53    | 0                     |                                 | 1                     | 0          | 57  | 1          |            | 0                     | 0          |
| 59      | 1                     |                       | 0                     | 0          | 67    | 0                     |                                 | 0                     | 1          | 69  | 1          |            | 0                     | 0          |
| 77+     | 0                     | 1                     | 0                     | 0          | 78+   | 1                     | 1                               | 0                     | 0          | 79  | 0          |            | 1                     | 0          |
| 80      | 1                     |                       | 0                     | 0          | 82    | 1                     |                                 | 0                     | 0          | 83+ | 0          | 1          | 0                     | 0          |
| 85      | 0                     |                       | 0                     | 1          | 86    | 1                     |                                 | 0                     | 0          | 87  | 1          |            | 1                     | 0          |
| 88+     | 0                     | 1                     | 0                     | 0          | 90    | 0                     |                                 | 1                     | 0          | 91  | 0          |            |                       | 1          |
| 92      | 1                     |                       | 1                     | 0          | 94    | 1                     |                                 | 0                     | 1          | 95  | 1          |            | 0                     | 0          |
| 97      | 1                     |                       | 0                     | 0          | 98+   | 0                     | 1                               | 0                     | 0          | 99  | 0          |            | 1                     | 0          |
| 100     | 1                     | 1                     | 0                     | 0          | 102   | 0                     |                                 | 0                     | 1          | 103 | 1          |            | 0                     | 0          |
| 105     | 0                     |                       | 1                     | 0          | 107   | 1                     |                                 | 1                     | 0          | 109 | 1          |            | 0                     | 0          |
| 110     | 1                     |                       | 0                     | 0          | 111   | 0                     |                                 | 0                     | 1          | 112 | 1          | 1          | 1                     | 1          |
| 116     | 1                     |                       | 0                     | 0          | 117   | 1                     |                                 | 0                     | 0          | 119 | 1          |            | 0                     | 0          |
| 121     |                       | 1                     | 0                     | 0          | 123   | 1                     |                                 | 1                     | 0          | 125 |            | 1          | 0                     | 0          |
| 127     |                       |                       | 0                     | 1          | 128   | 1                     |                                 | 0~ _                  | 0          | 129 |            | 1          | 0                     | 0          |
| 130     |                       |                       | 1                     | 0          | 132   |                       |                                 | 0                     | 0          | 134 |            |            | 0                     | 1          |
| 136     | 1                     |                       | 0                     | 0          | 137 < | 1 Intern              | ational Journ<br>in Social Scie | 0 ontempo             | 0          | 139 | 1          |            | 0                     | 0          |
| 141     | 1                     |                       | 0                     | 0          | 143   |                       | 1                               | 0                     | 0          | 145 |            |            | 1                     | 1          |
| 146     | 1                     |                       | 0                     | 0          | 149   |                       | 1                               | 0                     | 1          | 150 | 1          |            | 1                     | 0          |
| 153     |                       | 1                     | 0                     | 0          | 157   | 1                     |                                 | 0                     | 0          | 159 |            |            | 1                     | 0          |
| 160     | 1                     |                       | 0                     | 0          | 162   |                       | 1                               | 0                     | 0          | 163 |            | 1          | 0                     | 0          |
| 165     | 1                     |                       | 1                     | 0          | 168   |                       |                                 | 0                     | 1          | 169 |            | 1          | 0                     | 0          |
| 170     | 1                     |                       | 1                     | 0          | 172   |                       | 1                               | 0                     | 0          | 175 | 1          |            | 0                     | 0          |
| 176     |                       |                       | 1                     | 0          | 178   |                       | 1                               | 0                     | 1          | 179 | 1          |            | 0                     | 0          |
| 180     |                       | 1                     | 0                     | 0          | 182   | 1                     |                                 | 0                     | 0          | 184 | 1          |            | 0                     | 0          |
| 185     | 1                     |                       | 0                     | 0          | 187   |                       | 1                               | 0                     | 0          | 188 |            |            | 1                     | 1          |
| 189     | 1                     |                       | 0                     | 0          | 193   |                       | 1                               | 0                     | 0          | 195 | 1          |            | 0                     | 0          |
| 197     |                       | 1                     | 0                     | 0          | 199   |                       |                                 | 1                     | 0          | 204 |            | 1          | 0                     | 0          |
| 223     | 1                     |                       | 0                     | 0          | 237   |                       |                                 | 1                     | 1          |     |            |            |                       |            |

 Table 3: Thalassemia Data Set

In table 3, t denotes the time of study period in months, d1,c1 and n1 denote the number of deaths, number of censored and number of persons at risks due to thalassemia. Similarly, d2, c2 and n2 symbols are used for the number of deaths, number of censored and number of persons at risks due to heart problem. The minimum observed time is 12 months and the maximum time is 223 months.

Out of 119 patients, 52 deaths were observed due to thalassemia and 27 patients were censored not due to heart problem but may be they moved to other places or due to some other reasons. Out of 119 observed patients, 40 were observed to be heart patients. Further these 40 divided into 23 deaths due to heat problem and 17 were censored. Table. 3 give the

survival probabilities of K-M function and Piecewise Survival Function.

## Table. 4 Survival probabilities of K-M functionand Piecewise Survival Function.

| Tim | Kaplan-Meier      | Piece wise Kaplan- |
|-----|-------------------|--------------------|
| e   | Survival Function | Meier Survival     |
|     |                   | Function           |
| 12  | 0.9916            | 0.9916             |
| 15  | 0.9916            | 0.9916             |
| 17  | 0.9831            | 0.9831             |
| 19  | 0.9831            | 0.9585             |
| 22  | 0.9746            | 0.9502             |
| 24  | 0.9660            | 0.9419             |
| 25  | 0.9660            | 0.9419             |
| 27  | 0.9574            | 0.9335             |
| 29  | 0.9574            | 0.9335             |
| 30  | 0.9574            | 0.9089             |
| 33  | 0.9486            | 0.9006             |
| 36  | 0.9398            | 0.8922             |
| 37  | 0.9310            | 0.8839             |
| 38  | 0.9310            | 0.8839             |
| 39  | 0.9310            | 0.8839             |
| 42  | 0.9310            | 0.8593             |
| 44  | 0.9220            | 0.8510             |
| 47  | 0.9130            | 0.8426             |
| 49  | 0.9130            | 0.8426             |
| 53  | 0.9130            | 0.8186             |
| 57  | 0.9037            | 0.8103             |
| 59  | 0.8945            | 0.8020             |
| 67  | 0.8945            | 0.8020             |
| 69  | 0.8852            | 0.7937             |
| 77  | 0.8852            | 0.7937             |
| 78  | 0.8758            | 0.7852             |
| 79  | 0.8758            | 0.7614             |
| 80  | 0.8662            | 0.7531             |
| 82  | 0.8565            | 0.7447             |

| 83  | 0.8565     | 0.7447 |
|-----|------------|--------|
| 85  | 0.8565     | 0.7447 |
| 86  | 0.8467     | 0.7361 |
| 87  | 0.8369     | 0.7041 |
| 88  | 0.8369     | 0.7041 |
| 90  | 0.8369     | 0.6806 |
| 91  | 0.8369     | 0.6806 |
| 92  | 0.8265     | 0.6482 |
| 94  | 0.8161     | 0.6400 |
| 95  | 0.8055     | 0.6317 |
| 97  | 0.7949     | 0.6234 |
| 98  | 0.7949     | 0.6234 |
| 99  | 0.7949     | 0.5994 |
| 100 | 0.7840     | 0.5912 |
| 102 | 0.7840     | 0.5912 |
| 103 | 0.7728     | 0.5828 |
| 105 | 0.7728     | 0.5585 |
| 107 | 0.7614     | 0.5263 |
| 109 | 0.7499     | 0.5184 |
| 110 | 0.7383     | 0.5104 |
| 111 | 0.7383     | 0.5104 |
| 112 | ary 0.7266 | 0.4784 |
| 116 | 0.7143     | 0.4703 |
| 117 | 0.7020     | 0.4622 |
| 119 | 0.6897     | 0.4541 |
| 121 | 0.6897     | 0.4541 |
| 123 | 0.6771     | 0.4223 |
| 125 | 0.6771     | 0.4223 |
| 127 | 0.6771     | 0.4223 |
| 128 | 0.6639     | 0.4141 |
| 129 | 0.6639     | 0.4141 |
| 130 | 0.6639     | 0.3897 |
| 132 | 0.6500     | 0.3816 |
| 134 | 0.6500     | 0.3816 |
| 136 | 0.6359     | 0.3733 |
| 137 | 0.6218     | 0.3650 |
| 139 | 0.6076     | 0.3567 |
| 141 | 0.5935     | 0.3484 |
| 143 | 0.5935     | 0.3484 |
| 145 | 0.5935     | 0.3252 |

| 146 | 0.5783 | 0.3168   |
|-----|--------|----------|
| 149 | 0.5783 | 0.3168   |
| 150 | 0.5622 | 0.2824   |
| 153 | 0.5622 | 0.2824   |
| 157 | 0.5452 | 0.2738   |
| 159 | 0.5452 | 0.2489   |
| 160 | 0.5276 | 0.2409   |
| 162 | 0.5276 | 0.2409   |
| 163 | 0.5276 | 0.2409   |
| 165 | 0.5088 | 0.2091   |
| 168 | 0.5088 | 0.2091   |
| 169 | 0.5088 | 0.2091   |
| 170 | 0.4876 | 0.1753   |
| 172 | 0.4876 | 0.1753   |
| 175 | 0.4643 | 0.1670   |
| 176 | 0.4643 | 0.1431   |
| 178 | 0.4643 | 0.1431   |
| 179 | 0.4370 | 0.1347   |
| 180 | 0.4370 | 0.1347   |
| 182 | 0.4079 | 0.1257   |
| 184 | 0.3788 | 0.1167   |
| 185 | 0.3496 | 0.1077 < |
| 187 | 0.3496 | 0.1077   |
| 188 | 0.3496 | 0.0862   |
| 189 | 0.3108 | 0.0766   |
| 193 | 0.3108 | 0.0766   |
| 195 | 0.2664 | 0.0657   |
| 197 | 0.2664 | 0.0657   |
| 199 | 0.2664 | 0.0438   |
| 204 | 0.2664 | 0.0438   |
| 223 | 0.1776 | 0.0292   |
| 237 | 0.1776 | 0.0146   |
| L   | I      | 1        |

Table 4. can be summarized into the followingfigure 5.



Figure. 5 Survival probabilities of K-M function and Piecewise Survival Function.

From the above table and figure, it revealed that without considering the competing risk factor, the conventional survival function gives the overestimate the results. Piecewise Kaplan-Meier Survival Function overcome this problem and considers heart disease too. The performance of new method is more satisfactory than the K-M procedure. The complete description of the data is analyzed in appendix- A. Table. 4 give the comparison of Greenwood Variance estimates of K-M function and Piecewise Survival Function Variance estimates. Graphical comparison of the two methods is summarized in Figure 5. Greenwood variance estimates the increasing pattern, giving zero weight to disease II, while the new method importance to each and every noted observation, it gives the inverse tub i.e. it increases in the start reaches to the peak and then decreases. Disease II changes the pattern of the variance and gives more satisfactory results.

Table. 5 Comparison of Greenwood Varianceestimates of K-M function and Piecewise SurvivalFunction Variance estimates.

| an lunce estimates | •                                                                                                  |
|--------------------|----------------------------------------------------------------------------------------------------|
| Greenwood          | Piecewise                                                                                          |
| Variance           | Variance                                                                                           |
| 0.00007            | 7.00231E-05                                                                                        |
| 0.00007            | 7.00231E-05                                                                                        |
| 0.00014            | 0.00014                                                                                            |
| 0.00014            | 0.00072                                                                                            |
| 0.00021            | 0.00078                                                                                            |
| 0.00028            | 0.00083                                                                                            |
| 0.00028            | 0.00083                                                                                            |
|                    | Greenwood<br>Variance<br>0.00007<br>0.00007<br>0.00014<br>0.00014<br>0.00021<br>0.00028<br>0.00028 |

| 27  | 0.00035 | 0.00089 |
|-----|---------|---------|
| 29  | 0.00035 | 0.00089 |
| 30  | 0.00035 | 0.00143 |
| 33  | 0.00042 | 0.00147 |
| 36  | 0.00049 | 0.00151 |
| 37  | 0.00055 | 0.00156 |
| 38  | 0.00055 | 0.00156 |
| 39  | 0.00055 | 0.00156 |
| 42  | 0.00055 | 0.00206 |
| 44  | 0.00062 | 0.00209 |
| 47  | 0.00069 | 0.00211 |
| 49  | 0.00069 | 0.00211 |
| 53  | 0.00069 | 0.00256 |
| 57  | 0.00076 | 0.00257 |
| 59  | 0.00083 | 0.00259 |
| 67  | 0.00083 | 0.00259 |
| 69  | 0.00090 | 0.00260 |
| 77  | 0.00090 | 0.00260 |
| 78  | 0.00097 | 0.00262 |
| 79  | 0.00097 | 0.00301 |
| 80  | 0.00104 | 0.00302 |
| 82  | 0.00111 | 0.00302 |
| 83  | 0.00111 | 0.00302 |
| 85  | 0.00111 | 0.00302 |
| 86  | 0.00118 | 0.00302 |
| 87  | 0.00125 | 0.00337 |
| 88  | 0.00125 | 0.00337 |
| 90  | 0.00125 | 0.00368 |
| 91  | 0.00125 | 0.00368 |
| 92  | 0.00132 | 0.00396 |
| 94  | 0.00140 | 0.00392 |
| 95  | 0.00147 | 0.00389 |
| 97  | 0.00154 | 0.00386 |
| 98  | 0.00154 | 0.00386 |
| 99  | 0.00154 | 0.00412 |
| 100 | 0.00162 | 0.00407 |
| 102 | 0.00162 | 0.00407 |
| 103 | 0.00170 | 0.00403 |
| 105 | 0.00170 | 0.00426 |
| 107 | 0.00177 | 0.00440 |
| 109 | 0.00185 | 0.00433 |

| 110  | 0.00193 | 0.00426 |
|------|---------|---------|
| 111  | 0.00193 | 0.00426 |
| 112  | 0.00200 | 0.00434 |
| 116  | 0.00208 | 0.00426 |
| 117  | 0.00216 | 0.00418 |
| 119  | 0.00223 | 0.00410 |
| 121  | 0.00223 | 0.00410 |
| 123  | 0.00231 | 0.00413 |
| 125  | 0.00231 | 0.00413 |
| 127  | 0.00231 | 0.00413 |
| 128  | 0.00239 | 0.00404 |
| 129  | 0.00239 | 0.00404 |
| 130  | 0.00239 | 0.00413 |
| 132  | 0.00248 | 0.00403 |
| 134  | 0.00248 | 0.00403 |
| 136  | 0.00257 | 0.00392 |
| 137  | 0.00265 | 0.00382 |
| 139  | 0.00273 | 0.00371 |
| 141  | 0.00280 | 0.00361 |
| 143  | 0.00280 | 0.00361 |
| 145. | 0.00280 | 0.00365 |
| 146  | 0.00288 | 0.00353 |
| 149  | 0.00288 | 0.00353 |
| 150  | 0.00297 | 0.00347 |
| 153  | 0.00297 | 0.00347 |
| 157  | 0.00308 | 0.00333 |
| 159  | 0.00308 | 0.00332 |
| 160  | 0.00318 | 0.00317 |
| 162  | 0.00318 | 0.00317 |
| 163  | 0.00318 | 0.00317 |
| 165  | 0.00330 | 0.00293 |
| 168  | 0.00330 | 0.00293 |
| 169  | 0.00330 | 0.00293 |
| 170  | 0.00346 | 0.00267 |
| 172  | 0.00346 | 0.00267 |
| 175  | 0.00365 | 0.00248 |
| 176  | 0.00365 | 0.00231 |
| 178  | 0.00365 | 0.00231 |
| 179  | 0.00394 | 0.00212 |
| 180  | 0.00394 | 0.00212 |
| 182  | 0.00422 | 0.00192 |
|      |         |         |

| 0.00443 | 0.00173                                                                                                                                                                                                                                                 |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.00456 | 0.00155                                                                                                                                                                                                                                                 |
| 0.00456 | 0.00155                                                                                                                                                                                                                                                 |
| 0.00456 | 0.00136                                                                                                                                                                                                                                                 |
| 0.00494 | 0.00116                                                                                                                                                                                                                                                 |
| 0.00494 | 0.00116                                                                                                                                                                                                                                                 |
| 0.00532 | 0.00095                                                                                                                                                                                                                                                 |
| 0.00532 | 0.00095                                                                                                                                                                                                                                                 |
| 0.00532 | 0.00074                                                                                                                                                                                                                                                 |
| 0.00532 | 0.00074                                                                                                                                                                                                                                                 |
| 0.00762 | 0.00047                                                                                                                                                                                                                                                 |
| 0.00762 | 0.00022                                                                                                                                                                                                                                                 |
|         | 0.00443         0.00456         0.00456         0.00456         0.00494         0.00532         0.00532         0.00532         0.00532         0.00532         0.00532         0.00532         0.00532         0.00532         0.00532         0.00762 |



#### Figure 6: Comparison of the Greenwood Variance estimates and the Piecewise Kaplan-Meier Variance Estimates

#### CONCLUSIONS

The present study was based on exploring the phenomena of dependent diseases. As one of the assumptions of censoring in Kaplan-Meier Survival Function is independency i.e. disease under study must be independent but in real world, it is observed that most of the diseases are dependent. e.g. Overweight causes cholesterol, which is the main reason of high blood pressure and heart attack. In this research the attempt was made to develop the simple survival estimator and its variance estimator to overcome the problem of competing risk factor. The Piecewise Kaplan-Meier Estimator and Piecewise Estimator was developed. New methods are also described through the flowcharts.

For the comparison purpose detailed information based on 119 thalassemia patients was collected from the Fatimid Foundation Peshawar. Along with the major disease of interest, a competing risk i.e. heart problem was also considered. The complete data set was analyzed into three steps to check the overall performance of the new methods. Similarly, with the help of Greenwood Variance estimator and new variance estimator 95 Confidence Intervals were constructed. Results of the analysis showed that the Kaplan-Meier Survival Function give over estimates, while the Piecewise Kaplan-Meier Survival Function considered the dependency of censoring and provided the satisfactory results.

Limitation: Due to limitation of the data, methods were applied to only two diseases but it can be extended to more than two diseases.

#### REFERENCES

- Ajeba O. B., Kabir. Z. O'Connor. T. Survival Analysis of Adult Tuberculosis Disease.PLOS ONE. (2014). 9(11).
- Kleinbaum, D. G., & Klein, M. Survival Analysis. New York: SpringerScience+Business Media, Inc.(1996)
- Leemis, L. M. Reliability: Probabilistic Models and Statistical Methods-II. Prentice Hall, New Jersey, 1997
- Zaman Q, Strasak A, Pfeiffer KP. (2011). *Exact Waiting Time Survival Function. Journal of Biometrics & Biostatistics:* 2(3):100017.1-9.
- Kaplan, E.L., and Meier, P. Non Parametric Estimation from incomplete observations. Journal of the American Statistical Association 1958, Vol.53(282);457-481.
- Greenwood, M. A report on the natural duration of cancer. In Reports on Public Health and Medical Subjects 1926, 33; 1-26.
- Peto, R.; Peto, J. Asymptotically efficient Rank invariant test procedures. Journal of the royal society, 1972,185-207.
- Danken, E., killer, D.,Fischer,S., Marti, H.R(1975).Incidence of thalassemia in Switzerland. *Schweiz-Med-Wochenschr*. 105(4): 102-5
- Peto, R., Pike, M. C., Armitage, P. et al. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. Part II: Analysis and Examples. *British Journal of Cancer* 1977, 35(1); 1-39
- Politis, C., Richardson, C., Yfantopoulos, J.G., (1991).Public knowledge of thalassemia in Greece and current concepts of the social status of thalassemic patients.*Soc-Sci-Med.32(1):* 59-64
- Zaman Q, Raziq F, Iqbal M, Salahuddin, Hussain M. (2013). *Ideal Bootstrap Survival Function and Its Variance Estimator*. Journal of Science & Technology: 37(1):55-68.

- Zaman Q, Atif M, Iqbal M, Bibi A, Shah SH, Farooq M, Rafiq M, Pfeiffer KP. (2014). Estimation of Survival Probabilities in the Presence of Ties. Life Science Journal. 11(10s): 155-164.
- Fatimid Foundation, A symbol of hopes Pakistan. A Charitable Organization. Established 1981.



| time | d1 | c1 | n1  | s1     | GW       | d2 | c2 | n2 | s2     | SC     | PWV      | se     | 95lowerlimit | 95upperlimit |
|------|----|----|-----|--------|----------|----|----|----|--------|--------|----------|--------|--------------|--------------|
| 12   | 1  |    | 119 | 0.9916 | 7E-05    | 0  | 0  | 40 | 1      | 0.9916 | 7E-05    | 0.0084 | 0.9752       | 1.0080       |
| 15   | 0  | 1  | 118 | 0.9916 | 7E-05    | 0  | 0  | 40 | 1      | 0.9916 | 7E-05    | 0.0084 | 0.9752       | 1.0080       |
| 17   | 1  |    | 117 | 0.9831 | 0.00014  | 0  | 0  | 40 | 1      | 0.9831 | 0.00014  | 0.0118 | 0.9599       | 1.0063       |
| 19   | 0  |    | 116 | 0.9831 | 0.00014  | 1  |    | 40 | 0.975  | 0.9585 | 0.000722 | 0.0269 | 0.9059       | 1.0112       |
| 22   | 1  |    | 115 | 0.9746 | 0.00021  | 0  | 0  | 39 | 0.975  | 0.9502 | 0.000778 | 0.0279 | 0.8955       | 1.0049       |
| 24   | 1  |    | 114 | 0.9660 | 0.000279 | 0  | 0  | 39 | 0.975  | 0.9419 | 0.000834 | 0.0289 | 0.8853       | 0.9985       |
| 25   | 0  |    | 113 | 0.9660 | 0.000279 | 0  | 1  | 39 | 0.975  | 0.9419 | 0.000834 | 0.0289 | 0.8853       | 0.9985       |
| 27   | 1  |    | 112 | 0.9574 | 0.000348 | 0  | 0  | 38 | 0.975  | 0.9335 | 0.000889 | 0.0298 | 0.8750       | 0.9919       |
| 29   | 0  | 1  | 111 | 0.9574 | 0.000348 | 0  | 0  | 38 | 0.975  | 0.9335 | 0.000889 | 0.0298 | 0.8750       | 0.9919       |
| 30   | 0  |    | 110 | 0.9574 | 0.000348 | 1  |    | 38 | 0.9493 | 0.9089 | 0.00143  | 0.0378 | 0.8348       | 0.9830       |
| 33   | 1  |    | 109 | 0.9486 | 0.000418 | 0  | 0  | 37 | 0.9493 | 0.9006 | 0.001473 | 0.0384 | 0.8253       | 0.9758       |
| 36   | 1  |    | 108 | 0.9398 | 0.000486 | 0  | 0  | 37 | 0.9493 | 0.8922 | 0.001515 | 0.0389 | 0.8159       | 0.9685       |
| 37   | 1  |    | 107 | 0.9310 | 0.000554 | 0  | 0  | 37 | 0.9493 | 0.8839 | 0.001556 | 0.0394 | 0.8066       | 0.9612       |
| 38   | 0  |    | 106 | 0.9310 | 0.000554 | 0  | 1  | 37 | 0.9493 | 0.8839 | 0.001556 | 0.0394 | 0.8066       | 0.9612       |
| 39   | 0  | 1  | 105 | 0.9310 | 0.000554 | 0  | 0  | 36 | 0.9493 | 0.8839 | 0.001556 | 0.0394 | 0.8066       | 0.9612       |
| 42   | 0  |    | 104 | 0.9310 | 0.000554 | 1  |    | 36 | 0.9230 | 0.8593 | 0.002056 | 0.0453 | 0.7704       | 0.9482       |
| 44   | 1  |    | 103 | 0.9220 | 0.000624 | 0  | 0  | 35 | 0.9230 | 0.8510 | 0.002086 | 0.0457 | 0.7615       | 0.9405       |
| 47   | 1  |    | 102 | 0.9130 | 0.000693 | 0  | 0  | 35 | 0.9230 | 0.8426 | 0.002114 | 0.0460 | 0.7525       | 0.9328       |
| 49   | 0  | 1  | 101 | 0.9130 | 0.000693 | 0  | 0  | 35 | 0.9230 | 0.8426 | 0.002114 | 0.0460 | 0.7525       | 0.9328       |
| 53   | 0  |    | 100 | 0.9130 | 0.000693 | 1  | 0  | 35 | 0.8966 | 0.8186 | 0.002558 | 0.0506 | 0.7194       | 0.9177       |
| 57   | 1  |    | 99  | 0.9037 | 0.000763 | 0  | 0  | 34 | 0.8966 | 0.8103 | 0.002574 | 0.0507 | 0.7109       | 0.9097       |
| 59   | 1  |    | 98  | 0.8945 | 0.000832 | 0  | 0  | 34 | 0.8966 | 0.8020 | 0.00259  | 0.0509 | 0.7023       | 0.9018       |
| 67   | 0  |    | 97  | 0.8945 | 0.000832 | 0  | 1  | 34 | 0.8966 | 0.8020 | 0.00259  | 0.0509 | 0.7023       | 0.9018       |
| 69   | 1  |    | 96  | 0.8852 | 0.0009   | 0  | 0  | 33 | 0.8966 | 0.7937 | 0.002605 | 0.0510 | 0.6936       | 0.8937       |
| 77   | 0  | 1  | 95  | 0.8852 | 0.0009   | 0  | 0  | 33 | 0.8966 | 0.7937 | 0.002605 | 0.0510 | 0.6936       | 0.8937       |
| 78   | 1  | 1  | 94  | 0.8758 | 0.000969 | 0  | 0  | 33 | 0.8966 | 0.7852 | 0.00262  | 0.0512 | 0.6849       | 0.8856       |
| 79   | 0  |    | 92  | 0.8758 | 0.000969 | 1  | 0  | 33 | 0.8694 | 0.7614 | 0.003013 | 0.0549 | 0.6539       | 0.8690       |
| 80   | 1  |    | 91  | 0.8662 | 0.00104  | 0  | 0  | 32 | 0.8694 | 0.7531 | 0.003016 | 0.0549 | 0.6454       | 0.8607       |
| 82—  | 1  |    | 90  | 0.8565 | 0.001108 | 0  | 0  | 32 | 0.8694 | 0.7447 | 0.003019 | 0.0549 | 0.6370       | 0.8524       |

#### **Appendix-A : Based on 119 Observations**

https://ijciss.org/

| 83  | 0 | 1 | 89 | 0.8565 | 0.001108 | 0 | 0 | 32 | 0.8694 | 0.7447 | 0.003019 | 0.0549 | 0.6370 | 0.8524 |
|-----|---|---|----|--------|----------|---|---|----|--------|--------|----------|--------|--------|--------|
| 85  | 0 |   | 88 | 0.8565 | 0.001108 | 0 | 1 | 32 | 0.8694 | 0.7447 | 0.003019 | 0.0549 | 0.6370 | 0.8524 |
| 86  | 1 |   | 87 | 0.8467 | 0.001179 | 0 | 0 | 31 | 0.8694 | 0.7361 | 0.003022 | 0.0550 | 0.6284 | 0.8439 |
| 87  | 1 |   | 86 | 0.8369 | 0.001247 | 1 | 0 | 31 | 0.8414 | 0.7041 | 0.003366 | 0.0580 | 0.5904 | 0.8178 |
| 88  | 0 | 1 | 84 | 0.8369 | 0.001247 | 0 | 0 | 30 | 0.8414 | 0.7041 | 0.003366 | 0.0580 | 0.5904 | 0.8178 |
| 90  | 0 |   | 83 | 0.8369 | 0.001247 | 1 | 0 | 30 | 0.8133 | 0.6806 | 0.003678 | 0.0606 | 0.5618 | 0.7995 |
| 91  | 0 |   | 82 | 0.8369 | 0.001247 |   | 1 | 29 | 0.8133 | 0.6806 | 0.003678 | 0.0606 | 0.5618 | 0.7995 |
| 92  | 1 |   | 81 | 0.8265 | 0.001322 | 1 | 0 | 28 | 0.7843 | 0.6482 | 0.003957 | 0.0629 | 0.5249 | 0.7715 |
| 94  | 1 |   | 79 | 0.8161 | 0.001397 | 0 | 1 | 27 | 0.7843 | 0.6400 | 0.003924 | 0.0626 | 0.5173 | 0.7628 |
| 95  | 1 |   | 77 | 0.8055 | 0.001472 | 0 | 0 | 26 | 0.7843 | 0.6317 | 0.00389  | 0.0624 | 0.5095 | 0.7540 |
| 97  | 1 |   | 76 | 0.7949 | 0.001544 | 0 | 0 | 26 | 0.7843 | 0.6234 | 0.003857 | 0.0621 | 0.5017 | 0.7451 |
| 98  | 0 | 1 | 75 | 0.7949 | 0.001544 | 0 | 0 | 26 | 0.7843 | 0.6234 | 0.003857 | 0.0621 | 0.5017 | 0.7451 |
| 99  | 0 |   | 74 | 0.7949 | 0.001544 | 1 | 0 | 26 | 0.7541 | 0.5994 | 0.004119 | 0.0642 | 0.4736 | 0.7252 |
| 100 | 1 | 1 | 73 | 0.7840 | 0.001619 | 0 | 0 | 25 | 0.7541 | 0.5912 | 0.004073 | 0.0638 | 0.4661 | 0.7163 |
| 102 | 0 |   | 71 | 0.7840 | 0.001619 | 0 | 1 | 25 | 0.7541 | 0.5912 | 0.004073 | 0.0638 | 0.4661 | 0.7163 |
| 103 | 1 |   | 70 | 0.7728 | 0.001697 | 0 | 0 | 24 | 0.7541 | 0.5828 | 0.004028 | 0.0635 | 0.4584 | 0.7072 |
| 105 | 0 |   | 69 | 0.7728 | 0.001697 | 1 | 0 | 24 | 0.7227 | 0.5585 | 0.004264 | 0.0653 | 0.4305 | 0.6865 |
| 107 | 1 |   | 68 | 0.7614 | 0.001774 | 1 | 0 | 23 | 0.6913 | 0.5263 | 0.004396 | 0.0663 | 0.3964 | 0.6563 |
| 109 | 1 |   | 66 | 0.7499 | 0.001852 | 0 | 0 | 22 | 0.6913 | 0.5184 | 0.004326 | 0.0658 | 0.3895 | 0.6473 |
| 110 | 1 |   | 65 | 0.7383 | 0.001927 | 0 | 0 | 22 | 0.6913 | 0.5104 | 0.004257 | 0.0652 | 0.3825 | 0.6383 |
| 111 | 0 |   | 64 | 0.7383 | 0.001927 | 0 | 1 | 22 | 0.6913 | 0.5104 | 0.004257 | 0.0652 | 0.3825 | 0.6383 |
| 112 | 1 | 1 | 63 | 0.7266 | 0.002001 | 1 | 1 | 21 | 0.6584 | 0.4784 | 0.004343 | 0.0659 | 0.3492 | 0.6075 |
| 116 | 1 |   | 59 | 0.7143 | 0.002083 | 0 | 0 | 19 | 0.6584 | 0.4703 | 0.004262 | 0.0653 | 0.3423 | 0.5982 |
| 117 | 1 |   | 58 | 0.7020 | 0.002161 | 0 | 0 | 19 | 0.6584 | 0.4622 | 0.004181 | 0.0647 | 0.3354 | 0.5889 |
| 119 | 1 |   | 57 | 0.6897 | 0.002235 | 0 | 0 | 19 | 0.6584 | 0.4541 | 0.0041   | 0.0640 | 0.3286 | 0.5796 |
| 121 | 0 | 1 | 56 | 0.6897 | 0.002235 | 0 | 0 | 19 | 0.6584 | 0.4541 | 0.0041   | 0.0640 | 0.3286 | 0.5796 |
| 123 | 1 |   | 55 | 0.6771 | 0.002308 | 1 | 0 | 19 | 0.6237 | 0.4223 | 0.004129 | 0.0643 | 0.2964 | 0.5483 |
| 125 | 0 | 1 | 53 | 0.6771 | 0.002308 | 0 | 0 | 18 | 0.6237 | 0.4223 | 0.004129 | 0.0643 | 0.2964 | 0.5483 |
| 127 | 0 |   | 52 | 0.6771 | 0.002308 | 0 | 1 | 18 | 0.6237 | 0.4223 | 0.004129 | 0.0643 | 0.2964 | 0.5483 |
| 128 | 1 |   | 51 | 0.6639 | 0.002392 | 0 | 0 | 17 | 0.6237 | 0.4141 | 0.004036 | 0.0635 | 0.2895 | 0.5386 |
| 129 | 0 | 1 | 50 | 0.6639 | 0.002392 | 0 | 0 | 17 | 0.6237 | 0.4141 | 0.004036 | 0.0635 | 0.2895 | 0.5386 |
| 130 | 0 |   | 49 | 0.6639 | 0.002392 | 1 | 0 | 17 | 0.5870 | 0.3897 | 0.004133 | 0.0643 | 0.2637 | 0.5157 |

| 132 | 1 |   | 48 | 0.6500 | 0.00248  | 0 | 0 | 16 | 0.5870 | 0.3816 | 0.004027 | 0.0635 | 0.2572 | 0.5060 |
|-----|---|---|----|--------|----------|---|---|----|--------|--------|----------|--------|--------|--------|
| 134 | 0 |   | 47 | 0.6500 | 0.00248  | 0 | 1 | 16 | 0.5870 | 0.3816 | 0.004027 | 0.0635 | 0.2572 | 0.5060 |
| 136 | 1 |   | 46 | 0.6359 | 0.002569 | 0 | 0 | 15 | 0.5870 | 0.3733 | 0.003921 | 0.0626 | 0.2505 | 0.4960 |
| 137 | 1 |   | 45 | 0.6218 | 0.002651 | 0 | 0 | 15 | 0.5870 | 0.3650 | 0.003816 | 0.0618 | 0.2439 | 0.4861 |
| 139 | 1 |   | 44 | 0.6076 | 0.002727 | 0 | 0 | 15 | 0.5870 | 0.3567 | 0.003712 | 0.0609 | 0.2373 | 0.4761 |
| 141 | 1 |   | 43 | 0.5935 | 0.002797 | 0 | 0 | 15 | 0.5870 | 0.3484 | 0.003609 | 0.0601 | 0.2307 | 0.4661 |
| 143 | 0 | 1 | 42 | 0.5935 | 0.002797 | 0 | 0 | 15 | 0.5870 | 0.3484 | 0.003609 | 0.0601 | 0.2307 | 0.4661 |
| 145 | 0 |   | 41 | 0.5935 | 0.002797 | 1 | 1 | 15 | 0.5479 | 0.3252 | 0.003647 | 0.0604 | 0.2068 | 0.4435 |
| 146 | 1 |   | 39 | 0.5783 | 0.002881 | 0 | 0 | 13 | 0.5479 | 0.3168 | 0.00353  | 0.0594 | 0.2004 | 0.4333 |
| 149 | 0 | 1 | 38 | 0.5783 | 0.002881 | 0 | 1 | 13 | 0.5479 | 0.3168 | 0.00353  | 0.0594 | 0.2004 | 0.4333 |
| 150 | 1 |   | 36 | 0.5622 | 0.002974 | 1 | 0 | 12 | 0.5022 | 0.2824 | 0.003471 | 0.0589 | 0.1669 | 0.3978 |
| 153 | 0 | 1 | 34 | 0.5622 | 0.002974 | 0 | 0 | 11 | 0.5022 | 0.2824 | 0.003471 | 0.0589 | 0.1669 | 0.3978 |
| 157 | 1 |   | 33 | 0.5452 | 0.003078 | 0 | 0 | 11 | 0.5022 | 0.2738 | 0.003335 | 0.0577 | 0.1606 | 0.3870 |
| 159 | 0 |   | 32 | 0.5452 | 0.003078 | 1 | 0 | 11 | 0.4566 | 0.2489 | 0.003319 | 0.0576 | 0.1360 | 0.3618 |
| 160 | 1 |   | 31 | 0.5276 | 0.003182 | 0 | 0 | 10 | 0.4566 | 0.2409 | 0.003171 | 0.0563 | 0.1305 | 0.3513 |
| 162 | 0 | 1 | 30 | 0.5276 | 0.003182 | 0 | 0 | 10 | 0.4566 | 0.2409 | 0.003171 | 0.0563 | 0.1305 | 0.3513 |
| 163 | 0 | 1 | 29 | 0.5276 | 0.003182 | 0 | 0 | 10 | 0.4566 | 0.2409 | 0.003171 | 0.0563 | 0.1305 | 0.3513 |
| 165 | 1 |   | 28 | 0.5088 | 0.003301 | 1 | 0 | 10 | 0.4109 | 0.2091 | 0.002932 | 0.0541 | 0.1029 | 0.3152 |
| 168 | 0 |   | 26 | 0.5088 | 0.003301 | 0 | 1 | 9  | 0.4109 | 0.2091 | 0.002932 | 0.0541 | 0.1029 | 0.3152 |
| 169 | 0 | 1 | 25 | 0.5088 | 0.003301 | 0 | 0 | 8  | 0.4109 | 0.2091 | 0.002932 | 0.0541 | 0.1029 | 0.3152 |
| 170 | 1 |   | 24 | 0.4876 | 0.003462 | 1 | 0 | 8  | 0.3596 | 0.1753 | 0.002666 | 0.0516 | 0.0741 | 0.2765 |
| 172 | 0 | 1 | 22 | 0.4876 | 0.003462 | 0 | 0 | 7  | 0.3596 | 0.1753 | 0.002666 | 0.0516 | 0.0741 | 0.2765 |
| 175 | 1 |   | 21 | 0.4643 | 0.003654 | 0 | 0 | 7  | 0.3596 | 0.1670 | 0.002484 | 0.0498 | 0.0693 | 0.2646 |
| 176 | 0 |   | 20 | 0.4643 | 0.003654 | 1 | 0 | 7  | 0.3082 | 0.1431 | 0.002313 | 0.0481 | 0.0488 | 0.2374 |
| 178 | 0 | 1 | 19 | 0.4643 | 0.003654 | 0 | 1 | 6  | 0.3082 | 0.1431 | 0.002313 | 0.0481 | 0.0488 | 0.2374 |
| 179 | 1 |   | 17 | 0.4370 | 0.003939 | 0 | 0 | 5  | 0.3082 | 0.1347 | 0.002115 | 0.0460 | 0.0445 | 0.2248 |
| 180 | 0 | 1 | 16 | 0.4370 | 0.003939 | 0 | 0 | 5  | 0.3082 | 0.1347 | 0.002115 | 0.0460 | 0.0445 | 0.2248 |
| 182 | 1 |   | 15 | 0.4079 | 0.004223 | 0 | 0 | 5  | 0.3082 | 0.1257 | 0.001918 | 0.0438 | 0.0399 | 0.2115 |
| 184 | 1 |   | 14 | 0.3788 | 0.00443  | 0 | 0 | 5  | 0.3082 | 0.1167 | 0.001729 | 0.0416 | 0.0352 | 0.1982 |
| 185 | 1 |   | 13 | 0.3496 | 0.004558 | 0 | 0 | 5  | 0.3082 | 0.1077 | 0.001547 | 0.0393 | 0.0306 | 0.1848 |
| 187 | 0 | 1 | 12 | 0.3496 | 0.004558 | 0 | 0 | 5  | 0.3082 | 0.1077 | 0.001547 | 0.0393 | 0.0306 | 0.1848 |
| 188 | 0 |   | 11 | 0.3496 | 0.004558 | 1 | 1 | 5  | 0.2466 | 0.0862 | 0.001362 | 0.0369 | 0.0139 | 0.1585 |

| 189 | 1 |   | 9 | 0.3108 | 0.004943 | 0 | 0 | 3 | 0.2466 | 0.0766 | 0.001158 | 0.0340 | 0.0099  | 0.1433 |
|-----|---|---|---|--------|----------|---|---|---|--------|--------|----------|--------|---------|--------|
| 193 | 0 | 1 | 8 | 0.3108 | 0.004943 | 0 | 0 | 3 | 0.2466 | 0.0766 | 0.001158 | 0.0340 | 0.0099  | 0.1433 |
| 195 | 1 |   | 7 | 0.2664 | 0.005321 | 0 | 0 | 3 | 0.2466 | 0.0657 | 0.000953 | 0.0309 | 0.0052  | 0.1262 |
| 197 | 0 | 1 | 6 | 0.2664 | 0.005321 | 0 | 0 | 3 | 0.2466 | 0.0657 | 0.000953 | 0.0309 | 0.0052  | 0.1262 |
| 199 | 0 |   | 5 | 0.2664 | 0.005321 | 1 | 0 | 3 | 0.1644 | 0.0438 | 0.000743 | 0.0273 | -0.0096 | 0.0972 |
| 204 | 0 | 1 | 4 | 0.2664 | 0.005321 | 0 | 0 | 2 | 0.1644 | 0.0438 | 0.000743 | 0.0273 | -0.0096 | 0.0972 |
| 223 | 1 |   | 3 | 0.1776 | 0.007621 | 0 | 0 | 2 | 0.1644 | 0.0292 | 0.000472 | 0.0217 | -0.0134 | 0.0718 |
| 237 | 0 |   | 2 | 0.1776 | 0.007621 | 1 | 1 | 2 | 0.0822 | 0.0146 | 0.000225 | 0.0150 | -0.0148 | 0.0440 |

